
Fast and
Vulnerable
A Story of Telematic Failures
Center for Automotive Embedded Systems Security
Ian Foster, Andrew Prudhomme, Karl Koscher,
and Stefan Savage

Telematic Control Units
● Connects to car’s OBD-II port
● Monitors vehicle state
● Local sensors

○ GPS
○ Accelerometers

● Transmits data off device
○ Cellular, WiFi, Bluetooth

● Common uses:
○ Fleet tracking
○ Remote diagnostics

Our TCU
Mobile Devices Ingenierie - C4E (munic.box)

● ARM 11 500MHz CPU
● 64 MB RAM
● 256 MB Flash Storage
● Sensors

○ GPS
○ 3D accelerometer
○ 3 axis gyroscope

● Communication
○ GSM modem
○ USB “Debug” port
○ OBD Connector

Controller Area Network (CAN Bus)
● Connects various ECUs in cars
● Message based protocol
● Identifier for addressing destination
● Previously shown to be vulnerable

○ Charlie Miller and Chris Valasek
○ UCSD & UW

image source: munic.io

CAN Frame

Identifier Size Data
can0 442 [8] 42 01 80 00 00 00 00 00 'B.......'
can0 440 [8] 42 02 00 00 00 00 00 00 'B.......'
can0 442 [8] 40 02 00 00 00 00 00 00 '@.......'
can0 440 [8] 42 02 00 00 00 00 00 00 'B.......'
can0 620 [8] 10 00 00 00 00 40 00 80 '.....@..'
can0 442 [8] 40 02 00 00 00 00 00 00 '@.......'

Attack Surface
Local
● USB “debug” port
● NAND flash

Adversary has physical access to the
TCU. Do not consider the automobile
communications in this model.

Remote
● SMS
● 2G/3G

Adversary does not have physical
access to the TCU, and may not
even know where the TCU is
geographically located.

Local Attacks

Debug Interface
● Exposes USB network

○ Web & Telnet server for debug “console”
○ SSH Server
○ FTP Server for log retrieval and update uploading

NAND Dump
● Filesystem layout pulled from debug logs

○ dmesg

● NAND flash removed and dumped
○ de-soldered & read using hardware reader

● NAND flash simulated from dump
○ nandsim Linux kernel module

● Partitions mounted for reading
○ Unsorted Block Image File System (UBIFS)

SSH
Mounting the NAND flash dump revealed the private key for
the root user.

SSH
Mounting the NAND flash dump revealed the private key for
the root user.

The same private key worked on all C4 TCUs we tested.

SSH
Mounting the NAND flash dump revealed the private key for
the root user.

The same private key worked on all C4 TCUs we tested.

/etc/shadow was identical across devices and included
weak passwords.

CAN Bus Capabilities
● PIC Coprocessor

○ Used by devices with older firmware.
○ Custom interface for sending & receiving can messages.
○ Required ACC or ignition to be on to function.

■ Bypassed by reflashing PIC firmware without this check.

● SocketCAN
○ Used on devices with newer firmware.
○ Exposes the CAN interface as a traditional network interface.
○ Shipped with can-utils package.

■ Supports reading, saving, creating, and replying CAN messages.

Local Access Summary
● No authentication for debug consoles
● USB provides root access via web, telnet console, and

SSH.
● Can send and receive arbitrary CAN messages.

Remote Attacks

IP (2G)
● All services bound to all network interfaces.

○ web
○ telnet console
○ SSH

● Same local network attacks work over the
internet.

● Some devices protected by wireless carrier’s
NAT implementation.

SMS
The device responds to SMS “commands”

Examples:
● status
● gps position
● reset
● remote update

Normal Update Procedure
1. SCP UpdateFile.txt from update server

to device
2. SCP new files from UpdateFile.txt from

update server to temp folder
3. Move new files from temp folder to

destination directory
4. Optionally perform an additional action

a. clear
b. identify
c. status
d. reset

Normal Update Procedure
Problems
1. Updates are not cryptographically

signed.
2. TCU does not authenticate the update

server, instead the update server
authenticates the TCU.

Exploiting Update
Replaced a binary (console) that was called
post update to execute commands:

1. Replace console with console.bak (original)
2. Start reverse SSH tunnel to update server
3. Send SMS notification when reverse shell is

ready
4. Execute original console command

Remote Access Summary
● Same local debug consoles exposed remotely.
● SMS allows access if wireless carrier uses NAT.
● Can obtain root shell from IP or SMS.

○ Send arbitrary can packets remotely.
○ Get GPS coordinates remotly.

Finding Devices
● Need to know either IP address (without NAT) or SMS

number.
● SMS numbers were found to be from the 566 area

code, which is reserved for “personal communication
devices”

● Numbers were not random; appeared to be sequentially
assigned.

● Could likely enumerate them all by sending a “status”
SMS request to all numbers.

Shodan Search
Telnet Console PromptSSH Server Fingerprint

Proof of Concept Attack

http://www.youtube.com/watch?v=-CH9BvFlrGs

Proposed Solutions
1. Require update authentication
2. Disable remote SMS administration
3. Don’t distribute identical private keys
4. Use strong passwords
5. Disable WAN administration
6. Require debug console authentication
7. Maintain update server

Disclosure
● June 29th - Reach out to Mobile Devices with details of vulnerabilities
● July 2nd - Mobile-devices responds

○ Developer SIM
○ Advanced debug mode
○ Older software version

● July 8th - Reach out to Metromile with details of vulnerabilities
● July 8th - Metromile responds, will disable debug mode and disable SMS.

Disclosure - CERT
● July 12th - Inform CERT of vulnerabilities found in C4 platform
● July 14th - CERT responds, assigned vulnerability #209512
● August 6th - CERT assigned 5 CWEs:

○ CWE-306: Missing Authentication For a Critical Function
○ CWE-321: Use of a Hard-Coded Cryptographic Key
○ CWE-798: Use of Hard-Coded Credentials
○ CWE-285: Improper Authorization
○ CWE-345: Insufficient Verification of Data Authenticity

● Ongoing - Creating CVEs.

Thank You
Questions?

idfoster@cs.ucsd.edu

